

Cornell University Operations Research and Information Engineering

Vehicle Mix in EMS Systems

Shane G. Henderson

Joint work with:

Mix: Kenneth C. Chong, Mark E. Lewis Bound: Matt Maxwell, Eric Ni, Chaoxu Tong, Susan Hunter, Huseyin Topaloglu

Thanks to:

NSF CMMI 0758441, Optima Corporation, Toronto EMS, Ambulance Victoria, Armann Ingolfsson, Andrew Mason http://people.orie.cornell.edu/~shane

Outline

- Part 1: All-ALS or Tiered (Mixed) Fleet?
- Part 2 if time: Bounding Performance

ALS Only or Tiered?

- ALS: advanced life support (paramedics)
- BLS: basic life support (EMTs)
- Should the ambulance fleet be all-ALS or a mix?
 - All-ALS: e.g., Ornato et al (1990), Wilson et al . (1992)
 - Mix: e.g., Braun (1990), Clawson (1989),
 Slovis et al. (1985), Stout et al. (2000)
- In NL, what if have nurse shortage?

ALS Only or Tiered?

- All-ALS
 - Never sends a BLS ambulance to a call that needs ALS
 - Can potentially triage more quickly
- Tiered:
 - Many calls don't require paramedics
 - ALS is more expensive, so mixed fleets can be larger – shorter response times
 - Hiring and training paramedics can be hard
- Which is better?

Modeling Structure

- Decision variables:
 - $-n_a$, n_b = Number of ALS, BLS
- Constraints:
 - -B = annual operating budget
 - $-c_a(c_b)$ = annual cost per ALS (BLS)
 - $-c_a n_a + c_b n_b \le B$
- Enumerate over n_a to get optimal sol.
- Objective function?

Objective Function

- For each (*n_a*, *n_b*), simulate to get "performance?"
 - Using what dispatching policy?
 - With what deployment across the city?
 - Using redeployment?
- Two Models:
 - Optimal dispatching (MDP)
 - Optimal deployment (IP)

MDP for Dispatching

- Two classes of server (ALS, BLS), two classes of call (high and low)
- Instead of P(respond in x minutes) Maximize E(reward)
- (Not the first to use MDPs for EMS)
 - E.g., Jarvis (1975), Berman (1981), Zhang (2012), McLay & Mayorga (2012)

Additional Assumptions

- High priority must get response if any ambulance is available of either type
- BLS ambulances can treat high-priority
 - Can also handle "delayed till ALS is free"
- Rates are constant in time
- No queueing
 - Redirected to allied service
- Service rates are the same for all combinations
 - Easily relaxed numerically

Dispatching Policy

- State space {0, 1, ..., *n*_a} x {0, 1, ..., *n*_b}
- State (i, j): i ALS and j BLS are busy
- Only decision: Respond to low priority call with ALS if all BLS are busy?
- Maximize long-run average reward
- We have structural results, but for this work numerical results are of interest

Data from Toronto EMS

• 371,903 records from 1/1/07 - 31/12/08

Input Parameters

- Rates: $\lambda_h = 8$, $\lambda_l = 13$, $\mu = \frac{3}{4}$ per hr (mean service time 80 min)
- Rewards $r_{ha} = 1$, $r_{hb} = 0.5$, $r_l = 0.6$
- Costs $c_a = 1.25$, $c_b = 1$, b = 87.5
- Vehicle mixes we evaluate:
 - $\{ (n_a, n_b): n_a \le 70, n_b = \max \text{ possible} \} \\ \{ (0, 87), (1, 86), (2, 85), (3, 83), \ldots \}$

Results

13

Robustness: Rewards

All ALS fleet (70, 0) versus tiered system (27, 53) $r_{ha} = 1$

Performance of tiered fleets relative to ALS is fairly insensitive to reward values

Robustness II

Scale arrival rates

Change cost of ALS

Shane G. Henderson

Criticism

- The MDP ignores geography!
 (To allow dispatching complexity)
- Allows complete pooling of fleet
- Do the conclusions change if we take account of geography?
- To take account of geography (deployment), need to simplify dispatch

Integer Programming

- Road network is a graph (*N*, *E*)
- Arrival rates at node $i : \lambda_i^h, \lambda_i^l$
- Call response
 - T = response-time threshold(9min call handling, turnout = 7min or so)
 - $-t_{ij}$ = travel time between nodes *i* and *j*
 - $-C_i = \text{Neighbourhood of } i = \{j: t_{ij} \leq T\}$

Integer Programming

- Model related to MEXCLP (Daskin)
 - Busy probabilities p_a , p_b for each amb
 - Ambulances independently busy
- No call queueing
- Fraction of low priority calls receiving ALS response because all BLS are busy = q (approximated from MDP)

Decision Vars and Objective

- x_i^a , $x_i^b = #$ ALS, BLS at Node *i*
- $y_{iab} = 1$ if Node *i* covered by *a* ALS and *b* BLS exactly, 0 otherwise
- When $y_{iab} = 1$, collect reward at rate $\lambda_i^h r(h, a, b) + \lambda_i^l r(l, a, b)$,

where

$$r(h, a, b) = r_{ha} (1 - p_a^{\ a}) + r_{hb} p_a^{\ a} (1 - p_b^{\ b})$$

$$r(l, a, b) = r_l (1 - p_b^{\ b} + p_b^{\ b} (1 - p_a^{\ a}) q)$$

Integer Program n_a n_b $\sum \sum \sum (\lambda_i^h r(h, a, b) + \lambda_i^l r(l, a, b)) y_{iab}$ max $i \in N a = 0 b = 0$ $\sum x_i^a \le n_a$ s.t. $i \in N$ $\sum x_i^b \le n_b$ $i \in N$ n_a $\sum^{a} a \sum^{b} y_{iab} \le \sum x_j^a$ $\forall i \in N$ $a = 0 \quad b = 0$ $j \in C_i$ $\sum_{a}^{n_b} b \sum_{a}^{n_a} y_{iab} \le \sum_{i \in C_i} x_j^b$ $\forall i \in N$ b=0 $\overline{a=0}$ $\overline{j\in C}_i$ $\sum^{n_a} \sum^{n_b} y_{iab} \le 1$ $\forall i \in N$ a=0 b=0 $x_i^a, x_i^b, y_{iab} \in \mathbb{Z}_+$

Shane G. Henderson

Getting Integer Solutions

- Hard to solve IP, so use randomized rounding (Williamson & Shmoys)
 - Solve LP relaxation
 - Interpret x's as expected number of ambulances at that location, y's similarly
 - Repeat:
 - Generate consistent random deployment
 - Compute objective function
- Optimality gap almost always << 1%

Results (52 x 38 nodes)

Shane G. Henderson

Mixed Fleets?

- A wide range of tiered fleets can perform comparably (or outperform) an all-ALS fleet
- So can base the decision on other factors
 - History/politics
 - Paramedic (or in NL, nurse) availability
 - Maintaining skills of paramedics
- Provided that you dispatch/deploy well

Bounding Potential Performance

- Can't solve deployment and dispatch at same time, but maybe we could compute bounds and optimize the bounds?
- Can competitor's bid achieve promised performance?
- Can redeployment ensure good performance or do we need to take "other steps?"
- When, as researchers/managers, should we stop looking for improvements?
- The following only works for all-ALS
- Need lower bound on Prob(late call)

A Bound?

Each time a call comes in

- don't look at location yet
- pretend available ambulances are in locations that minimize the fraction of calls outside 9 minutes travel
- Pretend ambulance responds from those locations

Not a Bound

LHS is optimal for next call, but means much more workload. So RHS may be optimal overall

A Lower Bound

- Whenever call comes in, pretend available ambulances in optimal locations, and compute Prob(reach call)
 - Solve an IP (Church & Revelle '74) for each # of available ambulances
- Ensure that always have more ambulances available than in reality. (Coupling)
 - Ambulances are a queueing system
 - Construct a bounding queueing system with "smaller" service times (depend on # free ambs)
 - Simulate bounding queueing system

Stochastic Lower Bound

Shane G. Henderson

Stochastic Lower Bound

Shane G. Henderson

Shane G. Henderson

Results

For realistic but not real Edmonton model

- 1. Good static policy: 23.9% late
- 2. Redeploy: 18.8%
- 3. Redeploy (extra moves):
- 4. Lower Bound:

For realistic but not real Melbourne model

- 1. Good static policy: approx 19% late
- 2. Redeploy (extra moves):
- 3. Lower Bound:

1-2% = 1 amb, #ambs 16

16.6% 15.1%

#ambs 95

17.5% 11.2%

Bounds for Tiered Fleets

- Bounds on what?
 - Expected long-run reward?
 - Prob(on time with high) s/t bound on low?
 - Expected penalty for late calls? (most tractable)
- Coupling as used here *might* work...
- But Brown, Smith, Sun (2010) seems much more likely, for all-ALS too

Conclusions

- Vehicle mix
 - Tiered fleets just as good as, or better than, all-ALS, provided that fleet has enough ALS
 - Difference is small for well-managed systems
 - Can think about other issues to decide
- Redeployment bound
 - Requires some computation
 - Useful, but hard work to compute
 - Looking for other ways to compute bounds, and to improve policies, particularly for tiered systems
- http://people.orie.cornell.edu/~shane

Shane G. Henderson

Robustness: Rewards

All ALS fleet (70, 0) versus tiered system (27, 53) $r_{ha} = 1$

Performance of tiered fleets relative to ALS is fairly insensitive to reward values

Robustness II

Scale arrival rates

Change cost of ALS

Shane G. Henderson